Parallel Articulated-cable Exercise Robot (pacer): Novel Home-based Cable-driven Parallel Platform Robot for Upper Limb Neuro-rehabilitation
نویسندگان
چکیده
This paper examines the design, analysis and control of a novel hybrid articulated-cable parallel platform for upper limb rehabilitation in three dimensional space. The proposed lightweight, low-cost, modular reconfigurable parallel-architecture robotic device is comprised of five cables and a single linear actuator which connects a six degrees-of-freedom moving platform to a fixed base. This novel design provides an attractive architecture for implementation of a home-based rehabilitation device as an alternative to bulky and expensive serial robots. The manuscript first examines the kinematic analysis prior to developing the dynamic equations via the Newton-Euler formulation. Subsequently, different spatial motion trajectories are prescribed for rehabilitation of subjects with arm disabilities. A low-level trajectory tracking controller is developed to achieve the desired trajectory performance while ensuing that the unidirectional tensile forces in the cables are maintained. This is now evaluated via a simulation case-study and the development of a physical testbed is underway.
منابع مشابه
Dual Space Control of a Deployable Cable Driven Robot: Wave Based Approach
Known for their lower costs and numerous applications, cable robots are an attractive research field in robotic community. However, considering the fact that they require an accurate installation procedure and calibration routine, they have not yet found their true place in real-world applications. This paper aims to propose a new controller strategy that requires no meticulous calibration and ...
متن کاملStability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables
In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...
متن کاملCable-Driven Robot for Upper and Lower Limbs Rehabilitation
The science of rehabilitation shows that repeated movements of human limbs can help the patient regain function in the injured limb. There are three types of mechanical systems used for movement rehabilitation: robots, cable-driven manipulators, and exoskeletons. Industrial robots can be used because they provide a three-dimensional workspace with a wide range of flexibility to execute differen...
متن کاملTrajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion
Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...
متن کاملInterval Analysis of Controllable Workspace for Cable Robots
Workspace analysis is one of the most important issues in the robotic parallel manipulator design. However, the unidirectional constraint imposed by cables causes this analysis more challenging in the cabledriven redundant parallel manipulators. Controllable workspace is one of the general workspace in the cabledriven redundant parallel manipulators due to the dependency on geometry parameter...
متن کامل